Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia
نویسندگان
چکیده
Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
منابع مشابه
Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data
Forests are complex ecosystems characterized by several distinctive vertical layers with different functional properties. Measurements of CO2 fluxes by the eddy-covariance method at different heights can be used to separate sources and sinks in these layers. We used meteorological and eddy-covariance flux data gathered at 10 sites in the FLUXNET network across a wide range of forest type, struc...
متن کاملThe canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada
Annual fluxes of canopy-level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53Ð629 °N 106Ð200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour fo...
متن کاملStudying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)
Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...
متن کاملEndurance of larch forest ecosystems in eastern Siberia under warming trends
The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. Its persistence is considered to depend on near-surface permafrost, and thus, forecast warming over the 21st century and consequent degradation of near-surface permafrost is expected to affect the larch forest in Siberia. However, predictions of these effects vary greatly, and many uncertainties remain ab...
متن کاملInvestigation of Vegetation Dynamics and Range Conditions in Central Desert of Iran (Case Study: Haftooman, Khoor and Biabanak)
Abstract. The purpose of this study was to investigate vegetation dynamics and range conditions considering the climatic conditions and soil properties in Haftooman, Khoor and Biabanak deserts, Iran. For this purpose, after determining vegetation types and the associated species, the type of rangeland utilization, grazing season, the livestock type, the other relevant information, vegetation da...
متن کامل